The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

نویسندگان

  • Sandra Wingaard Thrane
  • Véronique L Taylor
  • Luca Freschi
  • Irena Kukavica-Ibrulj
  • Brian Boyle
  • Jérôme Laroche
  • Jean-Paul Pirnay
  • Roger C Lévesque
  • Joseph S Lam
  • Lars Jelsbak
چکیده

UNLABELLED The O-specific antigen (OSA) in Pseudomonas aeruginosa lipopolysaccharide is highly varied by sugar identity, side chains, and bond between O-repeats. These differences classified P. aeruginosa into 20 distinct serotypes. In the past few decades, O12 has emerged as the predominant serotype in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P. aeruginosa strains and their serotypes. While most serotypes were closely linked to the core genome phylogeny, we observed horizontal exchange of OSA biosynthesis genes among phylogenetically distinct P. aeruginosa strains. Specifically, we identified a "serotype island" ranging from 62 kb to 185 kb containing the P. aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrA(C248T)), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P. aeruginosa PA7. Acquisition and recombination of the "serotype island" resulted in displacement of the native OSA gene cluster and expression of the O12 serotype in the recipients. Serotype switching by recombination has apparently occurred multiple times involving bacteria of various genomic backgrounds. In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. IMPORTANCE Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during the past decades, and serotype O12 is predominant among these epidemic strains. It is not known why the MDR phenotype is associated with serotype O12 and how this clone type has emerged. This study shows that evolution of MDR O12 strains involved a switch from an ancestral O4 serotype to O12. Serotype switching was the result of horizontal transfer and genetic recombination of lipopolysaccharide (LPS) biosynthesis genes originating from an MDR taxonomic outlier P. aeruginosa strain. Moreover, the recombination event also resulted in acquisition of antibiotic resistance genes. These results impact on our understanding of MDR outbreak strain and serotype evolution and can potentially assist in better monitoring and prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular surveillance of European quinolone-resistant clinical isolates of Pseudomonas aeruginosa and Acinetobacter spp. using automated ribotyping.

Nosocomial isolates of Pseudomonas aeruginosa and Acinetobacter spp. exhibit high rates of resistance to antibiotics and are often multidrug resistant. In a previous study (D. Milatovic, A. Fluit, S. Brisse, J. Verhoef, and F. J. Schmitz, Antimicrob. Agents Chemother. 44:1102-1107, 2000), isolates of these species that were resistant to sitafloxacin, a new advanced-generation fluoroquinolone wi...

متن کامل

Sequence types 235, 111, and 132 predominate among multidrug-resistant pseudomonas aeruginosa clinical isolates in Croatia.

A population analysis of 103 multidrug-resistant Pseudomonas aeruginosa isolates from Croatian hospitals was performed. Twelve sequence types (STs) were identified, with a predominance of international clones ST235 (serotype O11 [41%]), ST111 (serotype O12 [15%]), and ST132 (serotype O6 [11%]). Overexpression of the natural AmpC cephalosporinase was common (42%), but only a few ST235 or ST111 i...

متن کامل

Molecular Study of PER and VEB Genes is Multidrug Resistant Pseudomonas aeroginosa Isolated From Clinical Specimens in Isfahan/Iran and their Antibiotic Resistance Patterns

Background & Aims: Duo to clinical use of antibiotics, pseudomonas aeruginosa strains with multiple drugs resistance have significantly increased throughout the world. Betalactamase production is one of the Mechanisms involved in resistance to pseudomonas aeruginosa resulting in many problems in the treatment of infections caused by this bacterium. The aim of this study was molecular analysis o...

متن کامل

Pseudomonas aeruginosa Population Structure Revisited

At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the ...

متن کامل

Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup O:11. The Greek Pseudomonas Aeruginosa Study Group.

The serotypes of 88 nonreplicate nosocomial Pseudomonas aeruginosa isolates from 11 Greek hospitals were studied in relation to their antibiotic susceptibilities. Rates of resistance to beta-lactams, aminoglycosides, and quinolones ranged from 31 to 65%, except for those to ceftazidime (15%) and imipenem (21%). Four serotypes were dominant: O:12 (25% of isolates), O:1 (17%), O:11 (16%), and O:6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015